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Aryl bromides react with primary alkyl Grignard reagents in
the presence of N,N,N0,N0-tetramethyl-1,3-propanediamine and
catalytic amounts of cobalt(II) chloride and an N-heterocyclic
carbene to yield the corresponding cross-coupling products in
high yields.

Palladium- and nickel-catalyzed cross-coupling reactions
are powerful tools for carbon–carbon bond formation. Recently,
cross-coupling reactions catalyzed by transition metals other
than palladium and nickel have attracted increasing attention.1

We have been interested in cobalt-catalyzed cross-coupling re-
actions.2 To expand the scope of cobalt-catalyzed cross-coupling
reactions, we report herein cobalt-catalyzed cross-coupling
reactions of aryl bromides with alkyl Grignard reagents.

Treatment of p-bromoanisole (1a) with octylmagnesium
chloride in the presence of catalytic amounts of cobalt(II)
chloride and a precursor of an N-heterocyclic carbene (NHC),
IMes.HCl,3 and 1.5 equiv of N,N,N0,N0-tetramethyl-1,3-pro-
panediamine (TMPDA) in diethyl ether afforded p-octylanisole
(2a) in 91% yield (Table 1, Entry 1).4 In this reaction, IMes.HCl
and TMPDA played key roles. In the absence of either
IMes.HCl or TMPDA, no 2a was obtained (Entries 2 and 8).
The use of phosphine ligands also failed to afford 2a (Entries
3–5).5 In contrast, the bulkier NHC precursor, IPr.HCl,3 served
as an effective ligand in the cross-coupling reaction (Entry 6).
Mes.HASPO6 did not work (Entry 7). The use of N,N,N0,N0-
tetramethylethylenediamine (TMEDA) instead of TMPDA
provided 2a in good yield (Entry 9). No 2a was obtained when
1,3-propanediamine, 2,20-bipyridyl, and triethylamine were
employed as an additive (Entries 10–12). The stoichiometric
amount of TMPDA was essential: the reaction in the presence
of 10mol% of TMPDA led to no formation of 2a (Entry 13).
This result suggests that TMPDA coordinates to magnesium to
promote the reaction. Diethyl ether was the best solvent. The re-
actions in THF, 1,4-dioxane, and 1,2-dimethoxyethane afforded
2a in 60%, 57%, and 68% yields, respectively.

The scope of aryl bromides in the cobalt-catalyzed cross-
coupling reaction is summarized in Table 2. Acetals (Entries 2
and 4) and silyl ether (Entry 3) were compatible under the reac-
tion conditions. The coupling reaction occurred at the brominat-
ed carbon exclusively to yield 2f, leaving the chloro moiety
untouched (Entry 5). Dimethylamino-substituted aryl bromide
1g underwent the coupling reaction smoothly (Entry 6). The re-
action of 1h having an electron-withdrawing trifluoromethyl
group resulted in moderate yield (Entry 7). Not only p-bromo-
anisole (1a) but also m- and o-bromoanisole were efficiently
converted to the corresponding products (Entries 8 and 9). Steri-
cally demanding 1k and 1n were also octylated in good yields

(Entries 10 and 13). However, the reaction of o-bromotrifluoro-
methylbenzene (1m) led to low yield, albeit with full conversion
(Entry 12). p-Iodoanisole, generally the more reactive than 1a,
was converted to 2a in only 28% yield, and a significant amount
of anisole was obtained. The reaction of p-chloroanisole suffered
from low conversion as well as formation of a trace amount of
2a. The effect of the leaving groups is not clear at this stage.

Other primary alkylmagnesium chlorides participated in the
cross-coupling reaction (Table 3). Hexyl- and butylmagnesium
chloride reacted with 1a to yield the corresponding p-alkylani-
soles in good yields (Entries 1 and 2). However, attempted ethyl-
ation suffered from low yield, possibly because of the slower
transmetalation (Entry 3). Octylmagnesium bromide was as re-
active as the corresponding chloride (Entry 4). Methyl and allyl
Grignard reagents did not react with 1a (Entries 5 and 6). Methyl
Grignard reagent might undergo transmetalation sluggishly. Al-
lyl Grignard reagent could be too reactive, and the carbene li-
gand can be decomposed. Silyl-substituted methylmagnesium

Table 1. Cobalt-catalyzed reaction of p-bromoanisole (1a) with
octylmagnesium chloride

Et2O, 25 °C, 1 h

Br

MeO

5 mol % CoCl2, 6 mol % ligand
1.5 equiv additive
1.5 equiv n-C8H17MgCl n-C8H17

MeO
2a1a, 0.50 mmol

Entry Liganda Additive 2a/% 1a/%

1 IMes.HCl TMPDA 91 0
2 None TMPDA 0 85
3 PPh3 TMPDA 0 55
4 P(c-C6H11)3 TMPDA 0 57
5 Pt-Bu3 TMPDA 0 77
6 IPr.HCl TMPDA 75 0
7 Mes.HASPO TMPDA 0 81
8 IMes.HCl None 0 50
9 IMes.HCl TMEDA 72 0
10 IMes.HCl H2N(CH2)3NH2 0 83
11 IMes.HCl Et3N

b 0 69
12 IMes.HCl 2,20-Bipyridyl 0 79
13 IMes.HCl TMPDAc 0 61

a

N N

Cl– IMes•HCl

N N

i -Pr

i -Pr

i -Pr

i -Pr Cl– IPr•HCl

Mes•HASPO

N
P

N

O H
b3.0 equiv. c10mol%.
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reagent reacted in boiling ether (Entry 7). The reaction of 1a
with isopropylmagnesium chloride was sluggish, providing p-
isopropylanisole (3h) in only 9% yield (Entry 8). As a byprod-
uct, aside from anisole, p-propylanisole (3h0) was obtained in
34% yield. It is probable that isomerization of isopropylcobalt
to n-propylcobalt would take place through �-hydride elimina-
tion followed by the anti-Markovnikov hydrocobaltation.7 The
reaction of cyclohexylmagnesium chloride thus afforded 3i in
32% yield as the sole alkylated product (Entry 9). Under the re-
action conditions, isomerization of terminal to internal olefin oc-
curred (Entry 10).8 Unfortunately, the reaction with phenylmag-
nesium bromide was sluggish, affording a large amount of ani-
sole (Entry 11).

Dedicated to Professor Ryoji Noyori on the occasion of his
70th birthday.
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Table 3. Scope of Grignard reagents

Et2O, 25 °C, 1 h

Br

MeO

5 mol % CoCl2, 6 mol % IMes•HCl
1.5 equiv TMPDA, 1.5 equiv RMgX R

MeO
31a, 0.50 mmol

Entry RMgX 3 Yield/%

1 n-C6H13MgCl 3a 78
2 n-C4H9MgCl 3b 66
3 EtMgCl 3c 11
4 n-C8H17MgBr 3d (=2a) 87
5 MeMgI 3e 0a

6 CH2=CHCH2MgBr 3f 0b

7 Me3SiCH2MgCl 3g 72c

8 i-PrMgCl 3h 9 (34d)
9 c-C6H11MgCl 3i 32

10 CH2=CH(CH2)9MgCl 3j0 (75e)
11 PhMgBr 3k 21

a90% of 1a was recovered. b82% of 1a was recovered. cPerformed
at reflux for 16 h. dYield of p-propylanisole (3h0). eYield of p-9-
undecenylanisole (3j0).

Table 2. Scope of aryl bromides

Et2O, 25 °C, 1 h

Br

5 mol % CoCl2, 6 mol % IMes•HCl
1.5 equiv TMPDA
1.5 equiv n-C8H17MgCl

21, 0.50 mmol
R

n-C8H17

R

Entry 1 R 2 Yield/%

1 1b p-Me 2b 84
2 1c p-CMe(OCH2CH2O) 2c 89
3 1d p-OSitBuMe2 2d 93
4 1e p-OTHP 2e 93
5 1f p-Cl 2f 69
6 1g p-Me2N 2g 88
7 1h p-CF3 2h 56
8 1i m-MeO 2i 83
9 1j o-MeO 2j 85

10 1k o-Me 2k 72
11 1l H 2l 68
12 1m o-CF3 2m 24
13 1n (1-Naphthyl) 2n 64
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