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Aryl bromides react with primary alkyl Grignard reagents in
the presence of N,N,N',N'-tetramethyl-1,3-propanediamine and
catalytic amounts of cobalt(Il) chloride and an N-heterocyclic
carbene to yield the corresponding cross-coupling products in
high yields.

Palladium- and nickel-catalyzed cross-coupling reactions
are powerful tools for carbon—carbon bond formation. Recently,
cross-coupling reactions catalyzed by transition metals other
than palladium and nickel have attracted increasing attention.!
We have been interested in cobalt-catalyzed cross-coupling re-
actions.? To expand the scope of cobalt-catalyzed cross-coupling
reactions, we report herein cobalt-catalyzed cross-coupling
reactions of aryl bromides with alkyl Grignard reagents.

Treatment of p-bromoanisole (la) with octylmagnesium
chloride in the presence of catalytic amounts of cobalt(Il)
chloride and a precursor of an N-heterocyclic carbene (NHC),
IMes-HCI,? and 1.5 equiv of N,N,N',N'-tetramethyl-1,3-pro-
panediamine (TMPDA) in diethyl ether afforded p-octylanisole
(2a) in 91% yield (Table 1, Entry 1).* In this reaction, IMes-HCl
and TMPDA played key roles. In the absence of either
IMes-HCI1 or TMPDA, no 2a was obtained (Entries 2 and 8).
The use of phosphine ligands also failed to afford 2a (Entries
3-5). In contrast, the bulkier NHC precursor, IPr-HCI,? served
as an effective ligand in the cross-coupling reaction (Entry 6).
Mes-HASPO® did not work (Entry 7). The use of N,N,N',N'-
tetramethylethylenediamine (TMEDA) instead of TMPDA
provided 2a in good yield (Entry 9). No 2a was obtained when
1,3-propanediamine, 2,2'-bipyridyl, and triethylamine were
employed as an additive (Entries 10-12). The stoichiometric
amount of TMPDA was essential: the reaction in the presence
of 10mol % of TMPDA led to no formation of 2a (Entry 13).
This result suggests that TMPDA coordinates to magnesium to
promote the reaction. Diethyl ether was the best solvent. The re-
actions in THF, 1,4-dioxane, and 1,2-dimethoxyethane afforded
2a in 60%, 57%, and 68% yields, respectively.

The scope of aryl bromides in the cobalt-catalyzed cross-
coupling reaction is summarized in Table 2. Acetals (Entries 2
and 4) and silyl ether (Entry 3) were compatible under the reac-
tion conditions. The coupling reaction occurred at the brominat-
ed carbon exclusively to yield 2f, leaving the chloro moiety
untouched (Entry 5). Dimethylamino-substituted aryl bromide
1g underwent the coupling reaction smoothly (Entry 6). The re-
action of 1h having an electron-withdrawing trifluoromethyl
group resulted in moderate yield (Entry 7). Not only p-bromo-
anisole (1a) but also m- and o-bromoanisole were efficiently
converted to the corresponding products (Entries 8 and 9). Steri-
cally demanding 1k and 1n were also octylated in good yields

Table 1. Cobalt-catalyzed reaction of p-bromoanisole (1a) with

octylmagnesium chloride
MeO

5mol % CoCl,, 6 mol% ligand
1.5 equiv additive

/©/Br 1.5 equiv n-CgH;7MgCl
MeO Et,0,25°C, 1h

1a, 0.50 mmol 2a
Entry Ligand® Additive 2a/% la/%
1 IMes-HCI TMPDA 91 0
2 None TMPDA 0 85
3 PPh; TMPDA 0 55
4 P(C—C6H|1)3 TMPDA 0 57
5 Pt-Bus TMPDA 0 77
6 IPr-HC1 TMPDA 75 0
7 Mes-HASPO TMPDA 0 81
8 IMes-HCl None 0 50
9 IMes-HCI TMEDA 72 0
10 IMes-HCI HzN(CHz)gNI‘h 0 83
11 IMes-HCI Et;NP 0 69
12 IMes-HCl 2,2'-Bipyridyl 0 79
13 IMes-HCI TMPDA® 0 61

i-Pr,
7\ +
NN
cr IMeseHCI

i-Pr CI"i-pf |PresHCI

[\
N

R
O H / MesHASPO

3.0 equiv. ¢10 mol %.

(Entries 10 and 13). However, the reaction of o-bromotrifluoro-
methylbenzene (1m) led to low yield, albeit with full conversion
(Entry 12). p-lIodoanisole, generally the more reactive than 1a,
was converted to 2a in only 28% yield, and a significant amount
of anisole was obtained. The reaction of p-chloroanisole suffered
from low conversion as well as formation of a trace amount of
2a. The effect of the leaving groups is not clear at this stage.
Other primary alkylmagnesium chlorides participated in the
cross-coupling reaction (Table 3). Hexyl- and butylmagnesium
chloride reacted with 1a to yield the corresponding p-alkylani-
soles in good yields (Entries 1 and 2). However, attempted ethyl-
ation suffered from low yield, possibly because of the slower
transmetalation (Entry 3). Octylmagnesium bromide was as re-
active as the corresponding chloride (Entry 4). Methyl and allyl
Grignard reagents did not react with 1a (Entries 5 and 6). Methyl
Grignard reagent might undergo transmetalation sluggishly. Al-
lyl Grignard reagent could be too reactive, and the carbene li-
gand can be decomposed. Silyl-substituted methylmagnesium
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Table 2. Scope of aryl bromides

5mol% CoCl,, 6 mol % IMessHCI
1.5 equiv TMPDA

= | Br 1.5 equiv n-CgH,7MgCl = | n-CgHa7
X\ Et,0,25°C, 1 h D\
R R
1, 0.50 mmol 2
Entry 1 R 2 Yield/%
1 1b p-Me 2b 84
2 1c p-CMe(OCH,CH,0) 2c 89
3 1d p-OSi'BuMe;, 2d 93
4 le p-OTHP 2e 93
5 1f p-Cl 2f 69
6 1g p-Me;N 2g 88
7 1h p-CF; 2h 56
8 1i m-MeO 2i 83
9 1j 0-MeO 2j 85
10 1k o0-Me 2k 72
11 1 H 21 68
12 1m 0-CF; 2m 24
13 In (1-Naphthyl) 2n 64

Table 3. Scope of Grignard reagents
5mol% CoCl,, 6 mol% IMes*HCI

/@/Bf 1.5 equiv TMPDA, 1.5 equiv RMgX Q/R
MeO Et,0,25°C, 1h MeO

1a, 0.50 mmol 3
Entry RMgX 3 Yield/%
1 Vl—CGH]}MgCl 3a 78
2 n-C4HoMgCl 3b 66
3 EtMgCl 3c 11
4 n-CgH;7MgBr 3d (=2a) 87
5 MeMgl 3e 0*
6 CH,=CHCH,MgBr 3f ob
7 Me;SiCH,MgCl 3g 72¢
8 i-PrMgCl 3h 9 (34%)
9 C-C6H1 1MgC1 3i 32
10 CH,=CH(CH;)9MgCl 3y (75%)
11 PhMgBr 3k 21

290% of 1a was recovered. ®82% of 1a was recovered. Performed
at reflux for 16h. ¢Yield of p-propylanisole (3h'). ®Yield of p-9-
undecenylanisole (3j').

reagent reacted in boiling ether (Entry 7). The reaction of la
with isopropylmagnesium chloride was sluggish, providing p-
isopropylanisole (3h) in only 9% yield (Entry 8). As a byprod-
uct, aside from anisole, p-propylanisole (3h’) was obtained in
34% yield. It is probable that isomerization of isopropylcobalt
to n-propylcobalt would take place through B-hydride elimina-
tion followed by the anti-Markovnikov hydrocobaltation.” The
reaction of cyclohexylmagnesium chloride thus afforded 3i in
32% yield as the sole alkylated product (Entry 9). Under the re-
action conditions, isomerization of terminal to internal olefin oc-
curred (Entry 10).% Unfortunately, the reaction with phenylmag-
nesium bromide was sluggish, affording a large amount of ani-
sole (Entry 11).

Dedicated to Professor Ryoji Noyori on the occasion of his
70th birthday.
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